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Abstract—In this work, we propose a new boundary condition
called CA;B to remedy the problems of constraints due to the Dirichlet
boundary conditions.
We consider the 2D-linear elasticity equation of Navier-Lamé with
the condition CA;B . The latter allows to have a total insertion of the
essential boundary condition in the linear system obtained without go-
ing through a numerical method like the lagrange multiplier method,
this resulted in a non-extended linear system easy to reverse. We have
developed the mixed finite element method using the mini element
space (P1 + bubble, P1). Finally we have shown the efficiency and
the feasibility of the limited condition CA;B .
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I. INTRODUCTION

The objective of this paper is to present the solution of

all the difficulties due to the standard boundary conditions.

This is possible by solving the Navier-Lam equation with the

generalized boundary condition CA,B using the mixed finite

element method (P1 + bubble, P1). At the same time, we

show all the advantages offered by this quality of boundary

conditions. In this sense, we calculate the displacement and

its divergence simultaneously by the intermediary of another

auxiliary unknown called the divergence of displacement.

We present two types of comparison: First, we compare the

results produced by (P1 + bubble, P1) and those provided

by the Abaqus system. Second, we compute the speed of

convergence α obtained by each of the two numerical methods

(P1+bubble, P1) and the finite element method implemented

in the article (J. Alberty et al. 2002, [1]), using linear regres-

sion. An analytical example is used to validate the accuracy,

convergence and robustness of the present mixed finite element

method for elasticity in order to evaluate the efficiency of this

method, as well as its usefulness.

Indeed, we will calculate the approximate displacement uh for

each of the two methods. They are programmed by Matlab,

whose code contains a routine which calculates the errors

between the calculated solution and the analytical solution

Ouadie Koubaiti and Ahmed Elkhalfi: Department of Mechanical en-
gineering,Faculty of Sciences and technics, Sidi Mohammed ben abdel-
lah University, Fez, Morocco e-mail: kouba108@gmail.com. Jaouad El-
mekkaoui: Department of Mathematics, Faculty Polydisciplinary of Beni-
Mellal, Beni-Mellal, Morocco . Nikos Mastorakis: Hellenic Naval Academy,
Pireus, Greece and Technical universityof Sofia, Sofia, Bulgaria. E-mail:
mastorakis4567@gmail.com

presented in the reference (J. Alberty et al. 2002, [1]).

When we calculate the solution of the system :

−µ∆u − (λ + µ)∇∇.u = f for a given mesh, we obtain an

approximate value of the solution uh . Consequently, as the

mesh is finer then the solution is more improved.

We consider the following theoretical relation :

‖ u− uh ‖1,Ω= βhα, (1)

β is a positive constant, h is the step of the mesh and α the

speed of convergence.

For the calculation of ‖ u − uh ‖1,Ω, we use the standard

‖ . ‖1,Ω defined below. Knowing that ‖ u−uh ‖1,Ω and h the

mesh step, we want to calculate α the speed of convergence

of the solution. For this, the simplest way to proceed is to

compose the logarithm in the equation (1).

We obtain:

log(‖ u− uh ‖1,Ω) = log(β) + α. log(h), (2)

We note that log(‖ u− uh ‖1,Ω) is an affine function for the

variable log(h) and α presents the slope.

To find the value of α, we compute (‖ u−uh ‖1,Ω) in different

meshes, then we plot the graph on the logarithmic scale of

(‖ u − uh ‖1,Ω) according to the log of step h. We get the

slope of the straight line. In practice, the points are not exactly

aligned to obtain the value of α. Indeed, we perform a linear

regression in the direction of the least squares, that is to say

we take for α the slope of the line which approaches all the

points.

A. New generalized condition CA,B

We propose the following boundary condition:

CA,B : Au+B(µ
∂u

∂n
+ λ(∇.u)n) = g , on ∂Ω = Γ, (3)

A and B are two invertible and bounded matrix functions

belonging to L∞(Γ), with Γ = ΓD ∪ΓN . These two matrices

are of order 2 for the 2D case and of order 3 for the 3D case.

We are building these new boundary conditions in order to

generalize all types of standard boundary conditions (Dirichlet,

Neumann, Robin, ...).

Indeed, we obtain the Dirichlet condition when ||| B ||| is

negligible before ||| A |||, and on the other hand the condition

of Neumann cannot be practically the only boundary condition,

so we are talking about the Robin or mixed condition which

are well presented by the new boundary condition CA,B .
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To illustrate the operation of this boundary condition, we

consider the following example, in which a rectangular do-

main and Γ = ∪4
i=1Γi its edge: we pose ΓD = Γ3 et

ΓN = Γ1 ∪ Γ2 ∪ Γ4, we consider the following boundary

conditions :



































u = (a(x, y), b(x, y)), sur Γ3

µ
∂u

∂n
+ λ∇.un = (c(x, y), d(x, y)), sur Γ1,

µ
∂u

∂n
+ λ∇.un = 0 sur Γ2,

µ
∂u

∂n
+ λ∇.un = 0 sur Γ4.

(4)

Assuming that the functions a, b, c, d are non-zero and

bounded on Γ, the system (4) can be expressed in the form of

the boundary condition :

CA,B : Au+B(µ
∂u

∂n
+ λ(∇.u)n) = g , sur ∂Ω = Γ. (5)

If we define the displacement u on Ω, then the matrix writing

of the boundary condition CA,B is written in the form:

(

1
a(x,y) 0

0 1
b(x,y)

)

(

u1 |ΓD

u2 |ΓD

)

+

(

1
c(x,y) 0

0 1
d(x,y)

)

(

µ∂u1

∂n
|ΓN

+λ(∇.u|ΓN
)n1)

µ∂u2

∂n
|ΓN

+λ(∇.u|ΓN
)n2)

)

=

(

ξ1(x, y) + ξ3(x, y)
ξ1(x, y) + ξ3(x, y)

)

(6)

For i = 1 or 3, we define the following functions :

ξi(x, y) =

{

1 si (x, y) ∈ Γi,

0 sinon.
(7)

According to the system (6), just take:

A =

(

1
a(x,y) 0

0 1
b(x,y)

)

, B =

(

1
c(x,y) 0

0 1
d(x,y)

)

(8)

We set the condition CA,B in the following way :

CA,B : Au+B(µ
∂u

∂n
+ λ(∇.u)n) = g1ΓN

+ h1ΓD
(9)

with g is a surface force function and h is a displacement

function.

• To model the Dirichlet boundary condition u = h using

the generalized condition CA,B , just take on ΓD:

A =

(

1 0
0 1

)

, B =

(

10−10 0
0 10−10

)

(10)

• To model the Neumann boundary condition :

(µ ∂u
∂n

+ λ(∇.u)n) = g using the generalized condition

CA,B , just take on ΓN :

B =

(

1 0
0 1

)

, A =

(

10−10 0
0 10−10

)

(11)

II. ADVANTAGE OF THE GENERALIZED CONDITION AT THE

WEAK PROBLEM LEVEL

A. Possibility of choosing a less restrictive functional space

In this section we propose the problem of Navier-Lamé

with the condition at the edge CA,B [18].We describe a new

auxiliary unknown ψ to be able to apply the mixed finite

element methods.

ψ = ∇.u =
∂u1
∂x

+
∂u2
∂y

. (12)

The Navier-lamé equation becomes:














−µ∆u− (λ+ µ)∇ψ = f in Ω,

ψ −∇.u = 0 in Ω,

Au+B(µ
∂u

∂n
+ λ∇.un) = g on Γ.

(13)

For more information, the reader is invited to consult the

article (MH. Sadd et al. 2005, [17], [16], [20], [21]).

The mathematical model of the Navier-lamé system with the

generalized boundary condition noted CA,B such that A is

called the Dirichlet matrix, while B is the Neumann matrix,

α and β are two strictly positive constants such as:

αu.u ≤ utB−1Au ≤ βu.u , ∀u ∈ R
2. (14)

||| . ||| defines a matrix norm. We assume :

• if ||| A |||≪||| B |||, puis CA,B est la condition aux

limites de Neumann.

• if ||| B |||≪||| A ||| puis CA,B est la condition aux limites

de Dirichlet.

We need the following functional spaces:

h1(Ω) = {u : Ω → R \ u,
∂u

∂x
,
∂u

∂y
∈ L2(Ω)}, (15)

V (Ω) = H1(Ω) = [h1(Ω)]2, (16)

M(Ω) = L2
0(Ω) = {q ∈ L2(Ω) \

∫

Ω

q = 0}. (17)

The existence and the uniqueness of the weak formulation

obtained is established in the papers [19], [18].

These spaces are less restrictive using the generalized bound-

ary condition CA,B .

We multiply the members of the equation (13) by the test

function v ∈ V (Ω) for the displacement and q ∈ M(Ω) for

the divergence of displacement, then we integrate and we apply

Green’s theorem and the generalized boundary condition CA,B

we obtain the following variational formulation described as

follows:

Find (u, ψ) ∈ V (Ω)×M(Ω) such as:















































∫

Ω

µ∇u : ∇vdΩ+

∫

Γ

B−1Au.vdΓ,

−

∫

Γ

µψ n.vdΓ +

∫

Ω

(λ+ µ)ψ∇.vdΩ,

=

∫

Ω

f.vdΩ+

∫

Γ

B−1g.v dΓ,
∫

Ω

(λ+ µ)q∇.udΩ−

∫

Ω

(λ+ µ)ψqdΩ = 0.

(18)
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The weak formulation (18) is rewritten as follows:

Find (u, ψ) ∈ V (Ω)×M(Ω) such as:
{

a(u, v) + bΓ(v, ψ) = L(v) ∀v ∈ V0(Ω),

b(u, q)− d(ψ, q) = 0 ∀q ∈M(Ω).
(19)

With the following bilinear forms:


































































a(u, v) =

∫

Ω

µ∇u : ∇vdΩ+

∫

Γ

B−1Au.vdΓ,

b(v, q) =

∫

Ω

(λ+ µ)q∇.vdΩ,

bΓ(v, q) = b(v, q)−

∫

Γ

µqn.vdΓ,

d(ψ, q) =

∫

Ω

(λ+ µ)ψqdΩ,

L(v) =

∫

Ω

f.vdΩ+

∫

Γ

B−1g.vdΓ.

(20)

According to (20), one notices that one resulted in a total

insertion of the boundary conditions in the weak formulation

of the problem, that allows us to make flat the numerical

computations which one will make thereafter in part of the

numerical resolution of the problem.

III. MIXED FINITE ELEMENT APPROXIMATION WITH

MINI-ELEMENT

A. Choice of a less restrictive approximate space

In this section we will implement the mixed finite element

method (P1+ bubble, P1) to solve the Navier-Lamé equation

with the generalized boundary condition CA,B .

For this purpose, we indicate the privileges granted to us

by this type of condition in the choice of the appropriate

interpolation space which is less restrictive. This makes it

easier for us to choose the basic functions suitable for our

approximate problem.

In numerical analysis, the mixed finite element method also

called hybrid finite element method is a finite element method

in which additional independent variables are presented as

nodal variables during the discretization of an equation prob-

lem. partial differential. Additional independent variables are

limited by the use of Lagrange multipliers.

To distinguish the mixed finite element method from the

classical finite element method is that the latter do not present

such additional independent variables. They are also called

irreducible finite element methods. The method of mixed finite

elements is effective for certain problems badly formulated

numerically by discretization by using the method of the

irreducible finite elements, by way of example calculates fields

of stress and deformation in an incompressible elastic body

which was treated by C.olek et al. 2013 [11].

To apply the mixed finite element method (P1+ bubble/P1),
we approach the problem by the standard Galerkin method.

For more explanations see the references (V. Girault et al.

1981. [5], [6], [3], [13], [7], [10], [9], [12].

Let Vh the space of interpolation by displacement of fi-

nite element and Mh is the space of interpolation by div-

displacement of finite element (corresponding to the spaces of

the continuous problem respectively V (Ω) and M = L2
0(Ω).

The functions of the space Vh are determined by their values

in each of the vertices of the mesh. Besides, the dimension of

the space Vh is N − ns, with N being the global number of

vertices and of ns the number of vertices at the limits. The

mixed finite element problem is defined as follows:

We define approximate spaces in the following form: (for ease

of formulation, we note the restriction of uh and ψh on K by

uh and ψh respectively) For everything, (uh, ψh) ∈ Vh×Mh ⊂
V ×M ,

uh =
3
∑

i=1

αK
i ϕ

K
i + βKµK(x) , αK

i , β
K ∈ R

2 (21)

ψh =
3
∑

i=1

θKi ϕ
K
i , θKi ∈ R , ∀K ∈ Th. (22)

While the less constraining approximate spaces Vh and Mh

are written in the form:

Vh = {uh ∈ V/uh|K =
3
∑

i=1

αK
i ϕ

K
i + βKµK(x) , ∀K ∈ Th},

(23)

Mh = {ψh ∈M/ψh|K =

3
∑

i=1

θKi ϕ
K
i , ∀K ∈ Th}. (24)

The spaces Vh and Mh are less restrictive thanks to the

boundary conditions CA,B , which exempts us to create the

space of approximation of the Lagrange multiplier caused by

the non-homogeneous Dirichlet boundary condition.

The approximate problem is formulated in the form: Find

(uh, ψh) ∈ Vh ×Mh
{

a(uh, vh) + bΓ(vh, ψh) = Lh(vh),

b(uh, qh)− dh(ψh, qh) = 0.
(25)

∀vh ∈ Vh, ∀qh ∈Mh, dont :

a(uh, vh) =

∫

K

µ∇uh : ∇vhdK (26)

+

∫

Γh

B−1Auh.vhdΓh, (27)

b(vh, qh) =

∫

K

(λ+ µ)qh∇.vhdK, (28)

bΓ(vh, qh) = b(vh, qh)−

∫

Γh

µqhnK .vhdΓh, (29)

d(ψh, qh) =

∫

K

(λ+ µ)ψhqhdK, (30)

L(vh) =

∫

K

f.vhdK +

∫

Γh

B−1gh.vhdΓh. (31)

Γh = Γ
⋂

∂K and nK normal over K. The existence of a

single solution of the mixed formulation (25) is proved by the

use of the continuity of the bilinear forms a on Vh × Vh, bΓ
on Vh×Mh, b on Vh×Mh and d on Mh×Mh which is clear

using Korn’s inequality. On the other hand, the coercivity of

the bilinear form a on Vh and d on Mh is held using their
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coercivity on V (Ω) and M(Ω) respectively from Vh ⊂ V (Ω).
The uniform condition of inf − sup of the bilinear form b and

the bilinear form bΓ on Vh ×Mh is treated by D.N Arnold et

al. 1984 in [2] and O.koubaiti and .al 2018 in [19], [18].

B. Exclusion of degrees of freedom associated with bubbles

To eliminate the degrees of freedom associated with bub-

bles, it suffices to express βK in the relation (21) as a function

of f , of the unknown ψ and of the function bubble µK .

Indeed, let (ij)j=1,2,3 be the (global) numbers of the 3 vertices

of the triangle K. We have ∀vh ∈ Vh

a(uh, vh) =

∫

K

µ∇uh : ∇vhdK +

∫

Γh

B−1Auh.vhdΓh,

(32)

In particular, if we take for l = 1.2, vlh = µK , since the

bubbles are zero on the edge of K then the equation (32)

becomes:

a(ulh, µ
K) =

∫

K

µ∇ulh : ∇µKdK, (33)

From (21) we have ulh|K = (
∑3

j=1 α
l
ij
ϕK
ij
) + βK

l µ
K(x)

a(ulh, µ
K) =

∫

K

µ∇[(
3
∑

j=1

αl
ij
ϕK
ij
) + βK

l µ
K(x)].∇µKdK,

(34)

=

∫

K

µ
3
∑

j=1

αl
ij
∇ϕK

ij
.∇µKdK +

∫

K

µβK
l ∇µK(x).∇µKdK.

(35)

By applying Green’s formula we have :
∫

K

∇ϕK
ij
.∇µKdK = −

∫

K

△ϕK
ij
µKd+

∫

∂K

∇ϕK
ij
.nµKd∂K

(36)

Since the ϕij are affine, then △ϕij = 0 et µK = 0 on ∂K,

we obtain :

a(ulh, µ
K) =

∫

K

µβK
l ∇µK(x).∇µKdK. (37)

According to the system (25) we have :

a(uh, µ
K) = L(µK)− bΓ(µ

K , ψh) (38)

Which means that for everything l = 1, 2 :

∫

K

µβK
l ∇µK .∇µKdK =

∫

K

f lµKdK−

∫

K

(λ+µ)ψh

∂µK

∂xl
dK

(39)

Since ψh|K =
∑3

j=1 θijϕ
K
ij

, alors

βK
l µ‖∇µ

K‖20,K =

∫

K

f lµKdK−(λ+µ)
3
∑

j=1

θij

∫

K

ϕK
ij

∂µK

∂xl
dK

(40)

Finally, we get for all l = 1, 2 :

βK
l =

1

µ‖∇µK‖20,K
(

∫

K

f lµKdK−(λ+µ)
3
∑

j=1

θij

∫

K

ϕK
ij

∂µK

∂xl
dK)

(41)

C. Algebric problem

In this section, we present the matrices A, Bγ , B, D,

L linked to discrete bilinear forms ah, bΓh, bh, dh, Lh

respectively and we express the bilinear forms according to

the operators as well defined here :































ah(uh, vh) = (Auh, vh),

bΓh(vh, qh) = (BΓvh, qh),

bh(uh, qh) = (Bvh, qh),

dh(ψh, qh) = (Dψh, qh),

Lh(vh) = Lvh,

(42)

∀(uh, vh) ∈ Vh(Ω)× Vh(Ω),
∀(ψh, qh) ∈Mh(Ω)×Mh(Ω)
With (42), we find that the discrete formulation (25) can be

expressed as a system of equations according to the following

form :
{

A uh +Bt
Γ ψh = L,

B uh −D ψh = 0,
(43)

Then the discrete formulation can also be expressed by a

system of linear equations as follows :

(

A Bt
Γ

B −D

)(

uh
ψh

)

=

(

L
0

)

(44)

With uh = (ux, uy)
t, we can express the algebraic system

(43) as follows :





Ax 0 Bt
Γ,x

0 Ay Bt
Γ,y

Bx By −D









ux
uy
ψ



 =





Lx

Ly

0



 (45)

Let {ϕ1;ϕ2....;ϕn} the finite element base formed of scalar

functions ϕi, i = 1...n . In practice, the two components

(uxh, u
y
h) of uh are always appreciated by a finite element of

space. Let N be the number of nodes in the finite element

mesh, and n = N −ns with ns the number of vertices on the

edges. The base of the space Vh is:

BVh
= {φ1 = (ϕ1, 0)...φn (46)

= (ϕn, 0), φn+1 = (0, ϕ1)...φ2n = (0, ϕn)}, (47)

Then, uh = (uxh, u
y
h) ∈ Vh can be given by the relation :

uh = ux1φ1 + ...+ uxnφn + uy1φn+1 + ...+ uynφ2n, (48)

For a given triangle Kk, the displacement field uh and the

divergence ψh are approximated by linear combinations of the

basic functions of the following form :

uxh =

3
∑

i=1

uxki
ϕki

+ uxbϕb, (49)

uyh =
3
∑

i=1

uyki
ϕki

+ uybϕb, (50)

ψh =
3
∑

i=1

ψki
ϕki

(51)
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We rewrite the system (25) on an element Kk of triangulation.

For all k = 1, ...nt, and in particular we take vxh = vyh =
ϕkj

+ ϕb and qh = ϕkj
, for all j = 1, 2, 3.











ax(u
x
h, ϕkj

+ ϕb) + bxΓ(ϕkj
+ ϕb, ψh) = Lx(ϕkj

+ ϕb),

ay(u
y
h, ϕkj

+ ϕb) + byΓ(ϕkj
+ ϕb, ψh) = Ly(ϕkj

+ ϕb),

bx(uyh, ϕkj
) + by(uyh, ϕkj

)− d(ψh, ϕkj
) = 0.

(52)

But, we have :

uxh =
3
∑

i=1

uxki
ϕki

+ uxbϕb, (53)

uyh =
3
∑

i=1

uyki
ϕki

+ uybϕb, (54)

ψh =
3
∑

i=1

ψki
ϕki

. (55)

The system (52) becomes :



















































































































ax(
3
∑

i=1

uxki
ϕki

+ uxbϕb, ϕkj
+ ϕb)

+bxΓ(ϕkj
+ ϕb,

3
∑

i=1

ψki
ϕki

) = Lx(ϕkj
+ ϕb),

ay(
3
∑

i=1

uyki
ϕki

+ uybϕb, ϕkj
+ ϕb)

+byΓ(ϕkj
+ ϕb,

3
∑

i=1

ψki
ϕki

) = Ly(ϕkj
+ ϕb),

bx(
3
∑

i=1

uxki
ϕki

+ uxbϕb, ϕkj
) + by(

3
∑

i=1

uyki
ϕki

+ uybϕb, ϕkj
)

−d(
3
∑

i=1

ψki
ϕki

, ϕkj
) = 0.

(56)

Since the bubble function ϕb is zero on the edge of each

element KK the system (56) becomes :

∫

Kk

((
3
∑

i=1

uxki
µ∇ϕki

) + uxb∇ϕb).(∇ϕkj
+∇ϕb)dKk

+

∫

Kk∩Γh

(B−1A)11

3
∑

i=1

uki
ϕki

ϕkj
dΓh+bΓ(ϕkj

+ϕb,
3
∑

i=1

ψki
ϕki

)

= Lx(ϕkj
+ ϕb), (57)

∫

Kk

((
3
∑

i=1

uyki
µ∇ϕki

) + uyb∇ϕb).(∇ϕkj
+∇ϕb)dKk

+

∫

Kk∩Γh

(B−1A)22

3
∑

i=1

uki
ϕki

ϕkj
dΓh+bΓ(ϕkj

+ϕb,
3
∑

i=1

ψki
ϕki

)

= Lx(ϕkj
+ ϕb), (58)

bx((

3
∑

i=1

uxki
ϕki

)+uxbϕb, ϕkj
)+by((

3
∑

i=1

uyki
ϕki

)+uybϕb, ϕkj
)

− d(
3
∑

i=1

ψki
ϕki

, ϕkj
) = 0. (59)

According to the relationship (36), for all i = 1, 2, 3 we have
∫

Kk

∇ϕki
.∇ϕb = 0 (60)

So the equations (57), (58), (59) becomes :

3
∑

i=1

uxki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk+

∫

Kk∩Γh

(B−1A)11ϕki
ϕkj

dΓh)

+uxb

∫

Kk

∇ϕb.∇ϕbdKk+bΓ(ϕkj
+ϕb,

3
∑

i=1

ψki
ϕki

) = Lx(ϕkj
+ϕb),

(61)

3
∑

i=1

uyki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk+

∫

Kk∩Γh

(B−1A)22ϕki
ϕkj

dΓh)

+uyb

∫

Kk

∇ϕb.∇ϕbdKk+bΓ(ϕkj
+ϕb,

3
∑

i=1

ψki
ϕki

) = Ly(ϕkj
+ϕb),

(62)

bx((
3
∑

i=1

uxki
ϕki

)+uxbϕb, ϕkj
)+bx((

3
∑

i=1

uyki
ϕki

)+uybϕb, ϕkj
)

− d(
3
∑

i=1

ψki
ϕki

, ϕkj
) = 0. (63)

We are going to express the equations (61), (62), (63) accord-

ing to the two components of uki
= (uxki

, uyki
), assuming that

(B−1A)ij = αij and (B−1)ij = βij for all i, j = 1, 2 .

3
∑

i=1

uxki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk +

∫

Kk∩Γh

α11ϕki
ϕkj

dΓh

+uxb

∫

Kk

∇ϕb.∇ϕbdKk+b
x
Γ(ϕkj

+ϕb,
3
∑

i=1

ψki
ϕki

) = Lx(ϕkj
+ϕb),

(64)

3
∑

i=1

uyki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk +

∫

Kk∩Γh

α22ϕki
ϕkj

dΓh

+uyb

∫

Kk

∇ϕb.∇ϕbdKk+b
y
Γ(ϕkj

+ϕb,
3
∑

i=1

ψki
ϕki

) = Ly(ϕkj
+ϕb),

(65)

bx((

3
∑

i=1

uxki
ϕki

)+uxbϕb, ϕkj
)+by((

3
∑

i=1

uyki
ϕki

)+uybϕb, ϕkj
)

− d(
3
∑

i=1

ψki
ϕki

, ϕkj
) = 0. (66)
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The bilinear forms bxΓ and byΓ appear in the equation (64), (65)

are expressed in the following way :

bxΓ(ϕkj
+ ϕb,

3
∑

i=1

ψki
ϕki

) =

bxΓ(ϕkj
,

3
∑

i=1

ψki
ϕki

) + bxΓ(ϕb,
3
∑

i=1

ψki
ϕki

)

=
3
∑

i=1

ψki
bxΓ(ϕkj

, ϕki
) +

3
∑

i=1

ψki
bxΓ(ϕb, ϕki

)

=
3
∑

i=1

ψki
[

∫

Kk

(µ+ λ)
∂ϕkj

∂x
ϕki

−

∫

Kk∩Γh

µϕkj
nxϕki

]

+
3
∑

i=1

ψki
[

∫

Kk

(µ+ λ)
∂ϕb

∂x
ϕki

−

∫

Kk∩Γh

µϕbnxϕki
]

=
3
∑

i=1

ψki
[

∫

Kk

(µ+λ)
∂(ϕkj

+ ϕb)

∂x
ϕki

−

∫

Kk∩Γh

µϕkj
nxϕki

]

(67)

In the same way we will have :

byΓ(ϕkj
+ϕb,

3
∑

i=1

ψki
ϕki

) =

3
∑

i=1

ψki
[

∫

Kk

(µ+λ)
∂(ϕkj

+ ϕb)

∂y
ϕki

−

∫

Kk∩Γh

µϕkj
nyϕki

] (68)

The linear forms Lx and Lx appear in the equations (64), (65)

are expressed in the following way:

Lx(ϕkj
+ ϕb) =

∫

Kk

(ϕkj
+ ϕb)fxdKk

+

∫

Kk∩Γh

(β11 + β21)gxϕkj
dΓh, (69)

Ly(ϕkj
+ ϕb) =

∫

Kk

(ϕkj
+ ϕb)fydKk

+

∫

Kk∩Γh

(β22 + β12)gyϕkj
dΓh. (70)

Concerning the bilinear forms bx and by appear in the system

(66) are expressed in this way :

bx((
3
∑

i=1

uxki
ϕki

) + uxbϕb, ϕkj
) = b(

3
∑

i=1

uxki
ϕki

, ϕkj
)

+ bx(uxbϕb, ϕkj
)

=
3
∑

i=1

uxki

∫

Kk

∂ϕki

∂x
ϕkj

+ uxb

∫

Kk

∂ϕb

∂x
ϕkj

(71)

by((
3
∑

i=1

uyki
ϕki

) + uybϕb, ϕkj
) = b(

3
∑

i=1

uyki
ϕki

, ϕkj
)

+ by(uybϕb, ϕkj
)

=
3
∑

i=1

uyki

∫

Kk

∂ϕki

∂y
ϕkj

+ uyb

∫

Kk

∂ϕb

∂y
ϕkj

(72)

The bilinear form d appears in the equation (66) is expressed

in the following way :

d(
3
∑

i=1

ψki
ϕki

, ϕkj
) =

3
∑

i=1

ψki
d(ϕki

, ϕkj
) (73)

=
3
∑

i=1

ψki

∫

Kk

ϕki
ϕkj

. (74)

We inject the relationships (74), (71), (72), (69), (70) (67), (68)

in the equations (64), (65) and (66). We obtain the following

equations which will help us to extract all the elements from

the local matrices associated with each element Kk :For all

k = 1, 2...nt, and j = 1, 2, 3

3
∑

i=1

uxki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk +

∫

Kk∩Γh

α11ϕki
ϕkj

dΓh)

+uxb

∫

Kk

∇ϕb.∇ϕbdKk+
3
∑

i=1

ψki
[

∫

Kk

(µ+λ)
∂(ϕkj

+ ϕb)

∂x
ϕki

−

∫

Kk∩Γh

µϕkj
nxϕki

]

=

∫

Kk

(ϕkj
+ ϕb)fxdKk +

∫

Kk∩Γh

(β11 + β21)gxϕkj
dΓh

(75)

3
∑

i=1

uyki
(

∫

Kk

µ∇ϕki
.∇ϕkj

dKk +

∫

Kk∩Γh

α22ϕki
ϕkj

dΓh)

+uyb

∫

Kk

∇ϕb.∇ϕbdKk+
3
∑

i=1

ψki
[

∫

Kk

(µ+λ)
∂(ϕkj

+ ϕb)

∂y
ϕki

−

∫

Kk∩Γh

µϕkj
nyϕki

]

=

∫

Kk

(ϕkj
+ ϕb)fydKk +

∫

Kk∩Γh

(β22 + β12)gyϕkj
dΓh

(76)

3
∑

i=1

uxki

∫

Kk

∂ϕki

∂x
ϕkj

+uxb

∫

Kk

∂ϕb

∂x
ϕkj

+
3
∑

i=1

uyki

∫

Kk

∂ϕki

∂y
ϕkj

+ uyb

∫

Kk

∂ϕb

∂y
ϕkj

−
3
∑

i=1

ψki

∫

Kk

ϕki
ϕkj

= 0. (77)

The linear system (45), attached to the discrete system (43) is

evaluated on each triangle Kk for all k = 1, ..nt, with nt is

the number of elements (triangles). The elements of the local

matrices in miniscule and the global matrices are indicated

by capital letters, and they are given by the following direct

summation:

The elements of the local matrices on element Kk for all k =
1, ...nt were designed starting from the equations (75), (76)
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and (77). They are given as :

a0ji =

∫

Kk

µ∇(ϕki
+ ϕb)∇(ϕkj

+ ϕb)dK (78)

A0 =
∑

K∈Th

a0ji, (79)

axji = a0ij +

∫

E∩K⊂Γh

α11ϕiϕjdΓh, (80)

Ax =
∑

K∈Th

axji, (81)

ayji = a0ij +

∫

E∩K⊂Γh

α22ϕiϕjdΓh, (82)

Ay =
∑

K∈Th

ayji, (83)

bxji =

∫

K

(λ+ µ)
∂(ϕki

+ ϕb)

∂x
ϕkj

dK (84)

Bx =
∑

K∈Th

bxji, (85)

byji =

∫

K

(λ+ µ)
∂(ϕki

+ ϕb)

∂y
ϕkj

dK (86)

By =
∑

K∈Th

byji, (87)

bxΓji
= bxji +

∫

E∩K⊂Γh

µϕki
nijϕj dE (88)

Bx
Γ =

∑

K∈Th

bxΓji
, (89)

byΓji
= byij +

∫

E∩K⊂Γh

µϕki
nijϕj dE (90)

By
Γ =

∑

K∈Th

byΓji
, (91)

dji =

∫

K

(λ+ µ)ϕki
ϕjdK (92)

D =
∑

K∈Th

dji, (93)

l0xi =

∫

K

f1(ϕki
+ ϕb)dK (94)

lxi = l0xi +

∫

E∩K⊂ΓΓh

(β11 + β21)g1ϕidE (95)

Lx =
∑

K∈Th

lxi , (96)

l0yi =

∫

K

f2(ϕki
+ ϕb)dK (97)

lyi = l0yi +

∫

E∩K⊂ΓΓh

(β12 + β22)g2ϕi (98)

Ly =
∑

K∈Th

lyi , (99)

knowing that f = (f1, f2)
t, g = (g1, g2)

t, nij = 0, 1 or -1.

IV. RSULTATS NUMRIQUES

This section presents the numerical results obtained during

the resolution of the Navier-Lamé problem in 2D. We present

several numerical results obtained using the mixed finite ele-

ment method (P1+bublle, P1). We compare these results with

those of Abaqus software and of the ordinary finite element

method. We consider a two-dimensional problem whose area

Fig. 1: A quarter of the plate with a hole in the center

of study Ω is a square plate of plexiglass material, with a

hole in the center (see figure 1). The domain is homogeneous,

for reasons of symmetry, we discretize that a quarter of the

domain. We assume :

• D = {x2 + y2 ≤ 1 such as : 0 ≤ x ≤ 1 et 0 ≤ y ≤ 1}
• Le domaine Ω = [−5, 5]× [−5, 5] \D
• (E = 2.90GPa , ν = 0.4)

We impose the following boundary conditions. On ΓD, we

take :

A =

(

1 0
0 1

)

, B =

(

10−10 0
0 10−10

)

(100)

On ΓN :

B =

(

1 0
0 1

)

, A =

(

10−10 0
0 10−10

)

(101)

• The domain Ω is stretched upwards (x = 5) with a

surface charge g = n = (1, 0).
• Dirichlet conditions are:

uy = 0 on: [1, 5]× {0}, ux = 0 on {0} × [1, 5].
• The force loads take the value f = (0,−(µ+λ))t for all

the nodes.

• The rest of the border is free [8].

n denotes the external normal on the edge ∂Ω. We propose an

exact solution: u(x, y) = (xy, xy + x). This solution verifies

the Navier-Lamé equation in the case where f takes the value

f = (0,−(µ+ λ))t on each node of the mesh.

The figures 2, 3, 4, 5 represent the displacements on the

domain Ω defined above for the step h = 0.25 for both MFEM

methods with CA,B and that of Abaqus software.

Almost zero values of the displacements which appear at the

edges [1, 5] × {0} and {0} × [1, 5]. They thus reflect the

boundary conditions of Dirichlet ux = 0 and uy = 0.

One observes then that displacements take maximum values

in the vicinity of the edges of the condition of Neumann.
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MATLAB CAB.png

Fig. 2: displacement ux, h = 0.25, MFEM with CA,B

abaqus.png

Fig. 3: displacement ux, h = 0.25, Abaqus

We notice that there is a similarity of results between our

method MFEM with CA,B and those of the software Abaqus.

We note that the results of Abaqus are based on the FEM

method validated in the literature. This similarity of results

means that the MFEM method is reliable and it provides

a good solution. We calculate ‖ u − uh ‖1,Ω for each of

the two methods, then we get the two slopes using linear

regression. The latter is presented in figures 10 and 11 for

each method. They represent the linear correlation between

log(‖ u− uh ‖1,Ω) and log(h) .

The errors ‖ u − uh ‖1,Ω and ‖ ψ − ψh ‖0,Ω of the

MFEM method with CA,B tends to 0 faster than those of the

MFEM method with standards boundary conditions. This is

reasonable. Indeed, with the generalized condition CA,B we

reverse the matrix of the linear system directly without going

through the algorithm of the iterative method which adds more

error and more execution time. The figures 6, 7, 8, 9 represent

the constraints σxx and σyy on the domain Ω defined above

for the step h = 0.25 for the two MFEM methods with CA,B

cab.png

Fig. 4: displacements uy , h = 0.25, MFEM with CA,B

abaqus.png

Fig. 5: displacements uy , h = 0.25, Abaqus

and that of Abaqus software.

We notice that the biggest constraints (over-stresses) are con-

centrated around the hole. The over-stresses are far from the

traction field. So, the presence of a hole leads to a weakening

of the structure due to over-stress around the hole. The table I

TABLE I: Errors table

Number of knots np 80 164 589

Number of elements nt 130 287 1099

Pas h 0.3 0.2 0.1

e∞ MFEM with CA,B 0.2252 0.2004 0.1699

‖ u− uh ‖1,Ω MFEM with CA,B 0.0342 0.0298 0.0146

‖ ψ − ψh ‖0,Ω MFEM with CA,B 0.0567 0.0346 0.0264

‖ u− uh ‖1,Ω MFEM with standards B.C 0.1360 0.1193 0.1074

‖ ψ − ψh ‖0,Ω MFEM with standards B.C 0.2032 0.1094 0.0894

‖ u− uh ‖1,Ω with FEM 0.4924 0.2075 0.1448

summarizes all the calculated errors. The error e∞ approaches

zero when h is small enough. Then the approximate solution

ψh obtained converges towards the discrete divergence (the

value of the divergence of the displacement u on each node).
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XX MATLAB CAB.png

Fig. 6: Constraint σxx, h = 0.25, MFEM with CA,B

abaqus.png

Fig. 7: Constraints σxx, h = 0.25, Abaqus

Another objective of this numerical part is to test the sta-

bility of the divergence of the field of displacement of the

numerical solution uh. Therefore, we will calculate the error

e∞ = maxi,j(| divu(xi, yj) − ψi,j |) for three meshes, and

we observe the variation of this error according to the size

of the mesh for h → 0. This example shows that the mixed

finite element method (P1 + bubble, P1) is more effective

than the ordinary method. This method makes it possible to

calculate displacements and their divergences simultaneously.

It guarantees the stability of these divergences on each node.

V. CONCLUSION

In this study, we proposed the mixed finite element method

(P1 + bubble, P1) for the resolution of the Navier-Lamé

system. This problem is solved by the choice of general-

ized boundary conditions CA,B which makes the spaces of

approximations less restrictive. As explained before, for the

problem of elasticity, in which the form a is coercive,the

stability can always be obtained by an adequate enrichment

MATLAB CAB.png

Fig. 8: Constraints σyy , h = 0.25, MFEM with CA,B

abaqus.png

Fig. 9: Constraints σxx, h = 0.25, Abaqus

of the displacement space. There are several ways to enrich

the space. Take our case as an example, the torque element

is unstable (linear displacement, linear divergence), and it can

be stabilized by adding a single degree of freedom of internal

displacement from a bubble function (see DN Arnold et al.

1984 [2]).

From the numerical results, we note that with the calculation of

the slopes for each method, the slope obtained by the method

(P1 + bubble, P1) is more higher than the slope obtained by

the classical method. This result means that the numerical

solution uapp obtained by the mixed finite element method

(P1+bubble, P1) converges very quickly to the exact solution

compared to the solution obtained by the classical method.

The advantage of this problem with the boundary condition

CA,B is at the programming level by Matlab. Just create

a single code and then apply it to ordinary problems like

Dirichlet and Neumann.

Also, one avoids the problem of constraints in the functional

spaces, this fact facilitates numerical calculations.
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Fig. 10: La pente α = 0.694 with MFEM S.B.C
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Fig. 11: La pente α = 2.082 with MFEM CA,B

Finally, we have shown that solving the elasticity problem

with boundary conditions CA,B , using the element (P1 +
bubble, P1) is much more efficient than a standard implemen-

tation with ordinary finite elements.

REFERENCES

[1] J. Alberty, Kiel, C. Carstensen, Vienna, S. A. Funken, Kiel and R. Klose,
Kiel. Matlab Implementation of the Finite Element Method in Elasticity.
Computing. Springer-Verlag .Volume 69, Issue 3, pp 239-263. 2002.

[2] D.N. Arnold, F.Brezzi, M.Fortin. A stable finite element for the stokes
equations. Estratto da Calcolo. vol: 21. 337 - 344. 1984.

[3] F.Brezzi and M.Fortin, Mixed and Hybrid Element Methods. Springer-
Verlag. New York. 1991.

[4] Jonas Koko Limos. Vectorized Matlab Codes for the Stokes Problem with
(P1 + Bubble, P1) Finite Element. Universite Blaise Pascal -CNRS
UMR 6158 ISIMA, Campus des Cezeaux - BP 10125, 63173 Aubire
cedex, France. 2012.

[5] V.Girault and P. A. Raviart. Finite Element Approximation of the Navier-
Stokes Equations, Springer-Verlag. Berlin Heiderlberg New York. 1981.

[6] Alexandre Ern. Aide-memoire Elements Finis, Dunod. Paris. 2005.
[7] D.Yang. Iterative schemes for mixed finite element methods with appli-

cations to elasticity and compressible flow problems. Numer. Math. vol:
93. pp.177-200. 2002.

[8] A. Geilenkothen. Constraint preconditioning for linear systems in elas-
ticity. Proceedings in Applied Mathematics. pp: 481 - 482. 2003.

[9] Daniele Boffi, Franco Brezzi, Michel Fortin. Mixed Finite Element
Methods and Applications, Springer, Berlin, Heidelberg. 2013.

[10] Gabriel N. Gatica. A Simple Introduction to the Mixed Finite Element
Method. Springer. Theory and Applications. 2014.

[11] Olek C Zienkiewicz, Robert L Taylor and J.Z. Zhu. The Finite Element
Method: Its basis and Fundamentals, Elsevier, Page Count: 756. 2013.

[12] Junichi Mtsumoto. A relationship between stabilized FEM and Bubble
fonction element stabilization method with orthogonal basis for incom-
pressible flows. Journal of applied mechanics. Vol 8. August. 2005.

[13] R.B.Kellogg and B. Liu, A finite element method for compressible
Stokes equations,SIAM. J.Numer.Anal.,33 , pp. 780-788. 1996.

[14] R. A. Nicolaides. Existence, uniqueness and approximation for general-
ized saddle point problems, SIAM J. Numer. Anal., 19 , pp. 349 - 357.
1982.

[15] MH. Sadd. Elasticity: Theory, Application and Numerics. Amsterdam:
Elsevier Butterworth Heinemann. 2005.

[16] SP. Timoshenko , Goodier JN. Theory of Elasticity. McGraw-Hill; New
York: 1985.

[17] Sadd MH. Elasticity: Theory, Application and Numerics. Amsterdam:
Elsevier Butterworth Heinemann; 2005.

[18] Ouadie Koubaiti, Jaouad El-mekkaoui, and Ahmed Elkhalfi. Complete
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